摘要

分布式传感器网络技术在复杂的多目标跟踪系统中发挥了极其重要的作用.本文针对多传感器多目标跟踪中的分布式传感器控制问题,提出了基于信息论的多传感器控制策略.首先,本文利用随机有限集(RFS)建模,给出了多传感器多伯努利滤波器,并通过一组参数化的多伯努利过程来近似多传感器多伯努利密度.进一步的,通过多伯努利滤波器的序贯蒙特卡罗实现,设计采样方案对多伯努利密度进行粒子采样,用一组带有权值的粒子集近似多目标状态空间分布.随后,借助巴氏距离(Bhattacharyya distance)作为传感器控制的评价函数用于多个传感器的独立并行控制方案的决策制定.作为另外一个重要内容,本文提出了一种基于多目标战术重要性评估的多传感器控制策略.该控制方案旨在评估多目标战术重要性的基础上对威胁度最大的目标进行优先跟踪.最后,仿真实验验证了所提算法的有效性.