摘要

故障信号特征提取的准确性是保证故障智能诊断识别率的关键因素。低信噪比情况下,故障诊断效果下降。变分模态分解方法(VMD)在信号分解精度和抗噪方面具有明显优势。在分析VMD抗噪性能的基础上,提出以VMD分解的各模态能量作为智能诊断特征信息,并与小波包的特征信息进行对比研究。将滚动轴承两种故障特征信息通过BP神经网络识别,用不同信噪比的加噪故障信号进行测试,结果表明,在低信噪比情况下基于VMD模态能量的故障特征更具有可识别性。

全文