摘要
随着5G技术的广泛应用,网络超密集化部署已成为必然趋势。超密集异构无线网络在实现网络高流量密度、高峰值速率性能的同时,给传统的网络切换算法带来了挑战,处于变速移动的终端会面临更频繁的切换问题,这将导致乒乓效应频率的显著提高,进而影响用户在网体验。针对上述问题,该文提出一种基于终端移动轨迹预测的网络切换算法,适用于各类型用户在高密度无线网络中的垂直切换和水平切换问题。首先,为了更高精度的移动轨迹预测,提出一种基于模糊核聚类和长短期记忆(LSTM)神经网络的预测方法,可以有效预测不同移动模式下用户终端的短时移动轨迹;之后,基于用户当前和预测位置,获取候选网络集合,通过候选集交运算法和指标阈值判断网络切换时机;当切换触发时,使用帝企鹅算法最优化网络选择。仿真结果表明,相比于其他类型的时间序列预测算法,该文提出的轨迹预测算法精度较高;同时相较对比算法,该文所提网络切换算法的切换次数适中,有效避免了乒乓效应,且提高了用户连接的网络质量。
- 单位