摘要

压缩机控制电路的健康状态管理在管道运输中至关重要。通常油气管道压缩机系统部署地点远离城市,环境恶劣,且负荷高、工作时间长,因此故障频发。构建可靠的健康状态检测模型通常需要大量的故障样本,然而在实际数据中,故障样本相对稀缺。采用一种基于自编码器(auto encoder,AE)的单分类方法对油气管道控制系统的异常状态进行辨识。该模型仅需对系统的正常工作状态进行学习,通过编码器可实现特征的自适应提取,从而对数据进行抽象表示,并获得较好的非线性映射能力;当数据分布异常时,系统可区分其与正常信号间的差异,并进行预警。实验部分采用西部输油管道控制系统中实地获取的通信解码信号以及电源信号进行验证,并以单分类支持向量机方法作对比实验,表明了所提出方法的有效性。