一种基于振荡耦合网络的水平集图像分割方法、计算机

作者:王斌; 戚刚毅; 陈雪盈; 孙亮; 张建龙; 王颖; 李洁
来源:2019-06-06, 中国, ZL201910493587.7.

摘要

本发明属于图像处理技术领域,公开了一种基于振荡耦合网络的水平集图像分割方法、计算机,包括:输入待分割图像;提取图像特征;初始化相位;使用Kuramoto模型对相位进行迭代演化;根据稳定后的相位获取图像中的目标个数和符合高斯分布的相位图;初始化演化曲线;计算相位图中每个像素的重构误差;累加每个像素的重构误差,构造数据驱动能量项;最小化该能量函数,驱动曲线演化,得到分割结果。相对于传统的有监督的水平集方法,本发明是基于Kuramoto模型得到图像中待分割目标的个数以及符合高斯分布的图像信息。由于高斯分布更符合图像的实际分布,因而,能够更好地实现无监督的多目标图像分割。