摘要

YOLOv4-Tiny目标检测网络算法存在参数多和计算量大等问题,无法部署在资源有限的平台上。提出一种基于GhostNet残差结构的主干轻量级目标检测网络算法YOLO-GhostNet。该算法采用GhostNet结构将普通卷积分成两步,即使用较少的卷积核生成一部分特征图,对生成的特征图通过简单计算获得另一部分特征图,并将两组特征图进行拼接,以减少计算所需资源与参数量。通过GhostNet构建残差结构的YOLO-GhostNet算法在经过批量归一化层优化后模型尺寸只有2.18 MB,较YOLOv4-Tiny算法模型尺寸减小90%。YOLO-GhostNet算法在GPU加速环境下平均处理图片速度比YOLOv4-Tiny算法提高24%,CPU处理速度比YOLOv4-Tiny加快56%。实验结果表明,该算法在饮料测试集中的平均精确度均值达到79.43%,相比YOLOv4-Tiny算法,其在精度无损失情况下能够大幅降低网络计算量和参数量,同时加快推理速度,更适合部署于资源算力不足的嵌入式设备。

全文