摘要
多光谱遥感图像(MSIs)包含大量的地物信息,这些信息蕴含在图像的多个光谱波段中。不同波段或者同一波段不同空间位置所含信息量差异很大,如何从MSIs中捕获有效信息是遥感图像语义分割中一项具有挑战性的任务。基于此,提出一种基于波段-位置自适应选择的端到端语义分割网络(BLASeNet)。所提网络采用编码器-解码器结构,在编码阶段,提出波段-位置自适应选择机制来自适应学习不同波段和同一波段不同空间位置权重,增强有效特征表达。为了利用MSIs的波段相关性,进一步提出三维残差块编码图像的光谱-空间特征。在解码阶段,提出自适应特征融合模块,通过网络学习自适应调整低级细节特征与高级语义特征的融合比例,并探究加法(BLASeNet-A)、元素乘法(BLASeNet-M)和串联(BLASeNet-C)等3种融合策略对模型性能增益的影响。此外,将通道注意力扩展到三维数据上,对融合后的特征图在通道维度上进行特征重标定,得到更准确的多级交互特征图。在ISPRS Potsdam、Qinghai和Tibet Plateau等3个数据集上的实验结果证明了BLASeNet的有效性。
- 单位