摘要
传感器输出数据的可靠性是保障其发挥作用的前提。鉴于主元分析(PCA)处理非线性问题能力的不足,提出了一种基于核主元分析(KPCA)的非线性微惯性测量单元(MIMU)传感器故障诊断方法。通过构建KPCA模型预测误差和传感器变量贡献量变化值实现故障监测与定位,为了减少参数选择的盲目性和建模工作量,利用模糊推理改进的自适应遗传算法(AGA)对KPCA核函数参数进行自动优选。仿真结果表明,所提出的方法对MIMU传感器具有良好的故障监测与识别能力,相比于常规KPCA,故障监测的平均准确率提高了18.44%,证明了方法的有效性和优势。
-
单位湖南三一工业职业技术学院