摘要
高考是综合评估人类知识和能力水平的标准化考试,与传统的自动问答任务相比其挑战性更高。该文面向我国高考试题历史部分,基于深度神经网络技术,构建了历史科目试题自动答题系统。在答题系统中融合知识的一个主要挑战是知识的上下文相关性:对于一个问题,在知识库存储的大量知识中,只有少数知识与回答该问题相关。针对这一挑战,该文设计了一种结合知识检索与机器阅读理解的知识融合自动答题系统。该系统利用知识检索的相关排序能力和机器阅读理解模型的知识定位能力,有效地发现问题相关的知识,从而增强自动答题的效果。实验结果显示,该系统可有效地作答高考历史科目试题。
- 单位