基于深度学习的激光干扰效果评价方法

作者:范有臣; 马旭; 马淑丽; 钱克昌; 郝红星
来源:红外与激光工程, 2021, 50(S2): 39-45.
DOI:10.3788/irla20210323

摘要

针对激光干扰效果评估受主观经验较大、难以定量评估的问题,提出了一种基于深度学习的激光干扰效果评估方法。首先,对YOLOV5算法进行了整体介绍,其次制作了来自不同角度、不同距离的3 020张激光干扰图像;然后,对标注的数据集进行训练,得到了激光干扰效果评估模型;最后,分别在YOLOV5x、YOLOV5l、YOLOV5m、YOLOV5s网络模型下训练300次,实验验证了模型的正确性。实验结果表明:利用训练好的模型实现了对激光干扰图像的效果评估,该模型不仅可以自动标注激光干扰区域和进行干扰效果等级评估,同时还融入了传统策略,可以通过计算标注区域面积占整幅图像面积的大小作为辅助决策,实现自动标注激光干扰区域面积所占百分比,识别准确度在80%以上,对激光干扰效果评估具有重要意义。

  • 单位
    中国人民解放军装备学院