摘要

目的 观察基于含瘤周的肿瘤全体积(GPTV)CT影像组学特征及临床相关独立预测因子构建的联合模型列线图预测肺腺癌淋巴血管侵犯(LVI)的价值。方法 回顾性分析142例经病理证实的肺腺癌患者,以7∶3比例将其随机分为训练集(n=100,40例LVI阳性、60例LVI阴性)和验证集(n=42,17例LVI阳性、25例LVI阴性)。以单因素分析及多因素logistic回归分析筛选肺腺癌LVI的临床相关独立预测因子,以之构建临床模型。分别基于肿瘤全体积(GTV)及含瘤周3 mm、6 mm、9 mm的GPTV(GPTV3、GPTV6和GPTV9)的增强动脉期CT图提取并筛选最佳影像组学特征,构建影像组学模型,即GTV、GPTV3、GPTV6和GPTV9模型并筛选最佳者;基于后者的影像组学评分和临床相关独立预测因子构建联合模型,绘制列线图进行可视化。以受试者工作特征(ROC)曲线评估各模型预测肺腺癌LVI的效能,以决策曲线分析(DCA)评价联合模型列线图的价值。结果 性别、吸烟和毛刺征均为肺腺癌LVI的临床相关独立预测因子(P均<0.05)。分别基于GTV、GPTV3、GPTV6及GPTV9筛选出7、16、10及8个最佳影像组学特征,用于构建GTV、GPTV3、GPTV6及GPTV9模型。GPTV3模型预测训练集、验证集肺腺癌LVI的曲线下面积(AUC)分别为0.82、0.77,均高于GTV(0.79、0.72,Z=3.74、2.62,P均<0.01)、GPTV6(0.80、0.72,Z=2.40、2.06,P均<0.05)及GPTV9(0.77,0.72,Z=3.03、2.59,P均<0.01),为最佳影像组学模型。联合模型列线图(0.86、0.73,Z=2.66、2.31,P均<0.05)及GPTV3模型(0.82、0.77,Z=2.23、2.54,P均<0.05)于训练集和验证集的AUC均高于临床模型(0.73、0.61),而联合模型列线图与GPTV3模型的AUC差异均无统计学意义(Z=1.57、0.88,P均>0.05)。阈值取0.20~0.50时,联合模型列线图与GPTV3模型的净获益相当,且均大于临床模型。结论 基于GPTV3影像组学特征及临床相关独立预测因子的列线图可有效预测肺腺癌LVI。

全文