摘要

针对用户轨迹停留点提取问题,提出一种基于深度学习的Bi-LSTM-DBSCAN模型。该模型采用双向长短期记忆网络作为特征提取器,利用改进的DBSCAN算法作为轨迹停留点聚类方法,完成停留点分析任务,有效地解决了轨迹数据点之间关联性不强、处理复杂轨迹段效果不明显带来的聚类效果不佳的问题。实验结果表明,该模型在Geolife轨迹数据集上进行轨迹停留点提取时,相比于使用该文提到的其他停留点提取方法,其准确率、召回率和F值有明显的提升,取得了较好的效果。

  • 单位
    信息工程大学