摘要

电力信息系统应用智能电网来管理电力设备。随着社会用电总量的增加和智能电网的推广与发展,电力网络的规模逐渐变大且管理复杂,然而,保障电力信息系统的安全是重要的。网络入侵检测技术可以有效避免来自网络的入侵行为和攻击,进而保障系统的安全。本文采用深度强化学习方法中的Dueling-DDQN算法解决网络中存在的入侵检测问题,智能体根据试错式的学习获得奖赏值来训练算法以提高网络入侵检测的效率且同时降低人工成本。最后使用NLS-KDD数据集进行对比实验,实验结果表明基于Dueling-DDQN的网络入侵检测算法可以提高检测的效率,进而更好地保障网络的安全性。