摘要

为解决较多图像匹配算法主要通过测量关键点之间的距离来实现特征匹配,忽略了图像的结构信息,使其存在较多的误匹配的问题,本文设计了方差约束耦合几何不变特性的图像匹配算法。借助于Forstner算子计算像素点的兴趣值,以检测图像的特征;计算图像的梯度信息,获取图像的方向值,并切割图像特征的圆形邻域,从而获取扇形子域;以图像的方向值为基础,通过计算扇形子域中的灰度不变矩,输出对应的特征向量;引入区域方差函数,获取图像的结构信息,将其加入至图像特征的匹配过程,以约束欧式距离的测量结果,实现图像特征匹配;最后利用匹配点间的几何不变特性,对匹配特征去伪求真,优化匹配结果。测试数据表明:相对于已有的匹配技术,在对无变换图像、缩放图像以及旋转图像匹配时,所提算法拥有更高的匹配准确度,分别达到了96.56%、95.38%和93.52%。