使用录音设备对1 605个常用汉字进行录音,得到920个孤立字发音、3 680个非特定人的语音样本库.采用语音语谱图作为汉语单字语音识别的特征,构建了6层卷积神经网络应用于模型库的语音识别.通过深度学习方法对语音样本进行了训练和识别.实验结果表明,所构造的20-40-3500结构的卷积神经网络模型对语音样本库具有最好的识别效果,对测试样本的识别率达到97.87%,对全部样本的识别率达到99.32%.