摘要
将粗糙集理论与BP神经网络相结合,以粗糙集中的信息系统决策表为主要工具,通过基于遗传算法的粗糙集属性约简算法对配电网中的原始数据进行约简,然后利用BP网络对最简规则集进行学习训练,最后用改进的粒子群算法对BP网络的权值和阈值进行优化,形成改进粒子群优化粗糙集-神经网络的模型结构。诊断结果表明:通过粗糙集属性约简,删除了大量不必要的冗余数据,提高了诊断速度和准确度。同时,针对配电网发生故障时存在误动、拒动等情况,该算法具有较高的泛化能力和较好的容错性。
-
单位西安理工大学; 中国水利水电第五工程局有限公司