摘要
为了克服目前预测等值附盐密度的三种单一预测模型,即多元线性回归法,BP神经网络法和最小二乘支持向量机法存在的问题,以光传感器输变电设备盐密在线监测系统提供的数据为依据,建立了基于小波神经网络的一种等值附盐密度的非线性组合预测模型。该模型为单输出的3层小波神经网络,即将多元线性回归,BP神经网络及最小二乘支持向量机的预测结果作为模型的输入,实际测量值作为输出,使训练的网络具有预测能力。为了更好地反映单一模型预测值对等值附盐密度的影响及提高等值附盐密度的预测精度,选用Morlet小波构建小波神经网络,采用误差反向传播学习算法来训练网络,利用遗传算法确定网络参数的初始值。仿真结果表明本模型预测精度不...
-
单位武汉交通职业学院; 武汉大学; 三峡电力职业学院