摘要
急性肝衰竭(ALF)无发病前兆且发展迅速,及时准确的预诊有助于预防措施的提前介入.对比分析了三种智能预诊方法(XGBoost,神经网络和随机森林)与因子分析的耦合模型,分别简称为XGBoost耦合因子分析(XGBoost-FA),神经网络耦合因子分析(ANN-FA)和随机森林耦合因子分析(RF-FA).选取2018年Kaggle竞赛的Acute Liver Failure数据集作为算例,首先利用因子分析将特征变量从30个降到16个(贡献率为80.6%),然后将8785条数据按照7:3的比例划分训练集和测试集,学习出的XGBoost-FA、ANN-FA和RF-FA预诊模型,在测试集上的(对数损失函数,训练时间)分别为:(0.6646636,14.8s),(0.733198,12.7s),(0.6721212,23.1s).对比预诊的结果可知:XGBoost-FA的精确度最高,ANN-FA的速度最快.
- 单位