摘要
目的本研究提出一种基于局部边缘特征的加权水平集演变算法,并应用于医学图像分割。方法首先,计算演变轮廓内外邻域的图像局部边缘特征;接着,计算演变轮廓邻近轮廓的平均边缘强度和图像梯度向量流场,构造加权函数项;然后,由此构建新的水平集算法能量函数的长度项和区域项,借助偏微分方程求得最小值获得图像目标理想边界。实验图像选用人工合成图像和临床实例图像,不同水平集算法分割性能采用Dice相似性系数。结果视觉分析显示,基于本研究算法获得的图像目标轮廓与真实图像目标区域边界吻合度最高。定量分析显示,基于本研究算法所得分割图像能获得更高的Dice相似性系数。此外,迭代次数较少时,本研究算法即可获得最佳目标轮廓,且增加迭代次数,本研究算法Dice相似性系数变化微弱不溢出。最后,初始轮廓位置不同,其他三种算法所得Dice相似性系数变化较大且低于本研究算法。结论本研究算法较其他水平集算法收敛速度快,对初始轮廓位置敏感度低,稳定性强,是一种可行的医学图像分割算法。
-
单位南京市第一医院; 南京医科大学