摘要
在低光照环境下,由于光子数极少且噪声较大,线阵相机的感光源不能充分曝光,从而导致图像的质量下降.为此,提出一种多尺度融合的残差编解码器的低照度图像增强方法,直接学习原始传感器RAW明暗图像之间的端到端映射,在完全恢复原始图像细节和色彩的同时有效增强图像的亮度;为了增加特征多样性并加快网络训练速度,在网络结构中加入残差块;为了聚合上下文的全局多尺度特征,设计一个密集上下文特征聚合模块,以弥补网络深层缺失的空间信息.基于SID数据集,与其他10种方法进行对比实验,结果表明,所提方法在视觉效果、定量评价(PSNR和SSIM)方面都明显优于其他大部分方法,可以在恢复图像亮度的同时,有效地表示图像的边缘和色彩等,并在弱光增强下获得令人满意的视觉质量.
- 单位