摘要
针对传统的属性约简算法无法有效分析条件属性之间耦合关系的问题,提出了一种新的算法,基于皮尔逊与邻域粗糙集的属性约简算法(pearson and neighborhood rough set,PNRS)。根据耦合关系的结果进一步确定条件属性对决策属性的重要度,提高约简算法分类的精度。UCI数据集结果表明,经过耦合关系校正后,属性约简的能力进一步提升,平均约简率提升了1%,平均准确率提升了0.36%。与传统的属性约简算法相比,计算耦合关系的方法提高了约简算法的分类性能,为进一步优化邻域粗糙集的约简结果奠定了理论基础。
- 单位