摘要

电力设备的在线监测系统常出现不同程度的数据缺失,而传统的缺失数据填补模型精度较低。因此提出一种基于自注意力生成对抗网络(self-attention generative adversarial networks,SA-GAN)的电力设备在线监测缺失数据填补模型。首先搭建基于自注意力机制的时间序列填补模型,并对权重融合模块进行改进,然后将时间序列填补模型作为生成器,构造对应的判别器与损失函数,提出了具有自注意力机制的生成对抗网络SA-GAN,对电力设备在线监测数据进行缺失填补。最后通过实际工程中的电力变压器、高压电缆在线监测数据对模型进行训练与测试,验证了模型的有效性。结果表明,通过局部遮掩对110 kV变压器在线监测数据进行自然缺失模拟并通过各类缺失填补模型进行补全时,SA-GAN模型的平均绝对误差(mean absolute error,MAE)最高为0.11,均方根误差(root mean square error,RMSE)最高为0.17,较其他模型分别至少降低19.10%、14.07%,验证了SA-GAN模型的有效性;对9.51%自然缺失率下的220 kV高压电缆在线监测数据进行填补时,SA-GAN模型的MAE为0.58,RMSE为0.84,较其他模型分别至少降低21.71%、14.43%,表明该模型可在电力设备状态异常且部分监测数据缺失的条件下有效恢复缺失数据。此外,经SA-GAN模型填补之后的数据有效提高了高压电缆序列的预测精度,间接验证了SA-GAN模型缺失数据填补的有效性。

  • 单位
    新疆大学; 国网福建省电力有限公司; 电力系统及大型发电设备安全控制和仿真国家重点实验室; 清华大学

全文