摘要

为解决人体姿态估计模型在提升预测精度时参数量和计算量增多导致模型运行效率低下的问题,在YOLOPose模型基础上设计出一种轻量级人体姿态估计网络MWE-YOLOPose。选择轻量级MobileNetV3网络重新构建骨干网络,保持特征丰富性同时加快特征提取速度;调整特征融合层通道数并添加ECA注意力机制进行跨通道交互,实现模型轻量化与准确度的平衡;引用WIOUV2损失函数降低几何因素的惩罚,增强模型的鲁棒性和泛化能力。实验结果显示,在OC_Human数据集上,改进后模型对比原始YOLOPose模型,在保持一定准确度的情况下,模型参数量和计算量分别降低86.8%和71.2%,有效降低了模型运算复杂度。