摘要
针对机载网络高度动态、高度不稳定造成流量监测设备难以在有限的监测周期内完成完整数据流负载特征的提取,限制了基于深度学习的流量分类方法的应用问题,提出了一种鲁棒性增强的机载网络流量分类方法。通过数据预处理及缺失样本处理方法将数据流映射为灰度矢量集合,基于完整的数据流训练数据集实现鲁棒性增强的长时递归卷积神经网络(RE-LRCN)分类模型的训练,在线上分类阶段,通过分类模型实现样本缺失数据流负载空间特征及数据流时序特征的提取,并进行数据流分类。通过在数据包缺失的流量测试数据集上的实验结果表明,所提方法可以有效抑制数据包缺失对分类准确性能的恶化。
-
单位空军工程大学信息与导航学院