目前,雾霾天气频发,为了提高PM2.5浓度的预测精度,建立了基于遗传算法优化的小波神经网络模型(GA-WNN)。该方法综合了遗传算法的全局搜索能力和小波神经网络(WNN)强大的非线性拟合的优点,弥补了传统神经网络容易陷入局部最小值和收敛速度慢的缺点。以河北省邢台市实时监测的PM2.5浓度数据为样本进行建模预测,预测结果的平均相对误差为11%。将其小波神经网络进行对比分析,实验结果表明:该方法有效地提高了预测精度,为短时的PM2.5含量预测提供了一个新途径。