摘要
为解决企业生产车间多空调能耗与生产任务、气候环境匹配的精准供能问题,实现多台大型中央空调机组蒸汽消耗预测,提出一种基于GRU和3DConv-PredRNN++的混合深度学习预测模型.针对多台空调机组动态联动关系,使用三维卷积和PredRNN++方法提取机组间蒸汽损耗关系作为空间因素特征参与模型预测;为捕捉蒸汽消耗量序列的总体趋势和局部变化,数据集采用平滑过程模式、趋势性模式和周期性模式作为模型输入;为提高模型预测性能,基于门控循环单元(GRU)耦合外部因素特征并捕捉时间因素特征;最后通过参数矩阵融合方式来构建模型.通过与多种预测模型的对比实验,证明混合深度学习模型预测精度的优越性和空间因素特征参与模型预测的必要性.与现有模型相比,所提模型平均能耗折标(ASEC)降低了60.09%.
- 单位