摘要

针对复杂结构的三维形状分析与识别问题,提出了新颖的图卷积分类方法,建立了局部几何与全局结构联合图卷积学习机制,有效提高了三维形状数据学习的鲁棒性与稳定性。首先,通过最远点采样与最近邻方法构造局部图,并建立动态卷积算子,有效提取局部几何特征;同时,基于特征域采样构造全局的特征谱图,通过卷积算子获得全局结构信息。进而,构建加权的联合图卷积学习网络模型,引入注意力机制,实现自适应的特征融合。最终,在联合优化目标函数约束下,有效提高特征学习的性能。实验结果表明,融合局部几何与全局结构的联合图卷积网络学习机制,有效提高了深度特征的表示能力及区分性,具有更优秀的识别力和分类性能。该研究方法可应用于大规模三维场景识别、三维重建以及数据压缩,在机器人、产品数字化分析、智能导航、虚拟现实等领域具有着重要的工程意义与广泛的应用前景。

全文