摘要
近年来,城市发展快速,大量人口奔向城市工作生活,城市建筑物的数量有如雨后春笋般扩张,需要合理地规划城市土地资源,遏制违规乱建现象,因此基于高分辨率遥感影像,对建筑物进行准确提取,对城市规划和管理有着重要辅助作用。本文基于U-Net网络模型,使用美国马萨诸塞州建筑物数据集,对网络模型结构进行探究,提出了一种激活函数为ELU、"编码器-特征增强-解码器"结构的网络模型FE-Net。实验首先通过比较不同网络层数的U-Net5、U-Net6、U-Net7的建筑物提取效果,找到最佳的基础网络模型U-Net6;其次,基于该模型,加入特征增强结构得到"U-Net6+ReLU+特征增强"的网络模型;最后,考虑到ReLU容易产生神经元死亡,为优化激活函数,将激活函数替换为ELU,从而得到网络模型FE-Net(U-Net6+ELU+特征增强)。比较3个网络模型(U-Net6+ReLU、U-Net6+ReLU+特征增强、FE-Net(U-Net6+ELU+特征增强))的建筑物提取结果,表明FE-Net网络模型的建筑物提取效果最好,精度放松F1值达到97.23%,比"U-Net6+ReLU"和"U-Net6+ReLU+特征增强"2个网络模型分别高出0.36%和0.12%,且与其他具有相同数据集的研究成果比较,具有最高的提取精度,它能较好地提取出多尺度的建筑物,不仅对小尺度建筑物有较好的提取效果,而且能大致、较完整地提取出形状不规则的建筑物,有相对更少的漏检和错检,较准确地实现了端到端的建筑物提取。
-
单位兰州交通大学; 中国测绘科学研究院