摘要
针对轴承性能退化状态的识别问题,提出一种基于基本尺度熵与GG聚类的退化状态识别方法。首先分析轴承性能退化过程中的基本尺度熵演化规律,并分析该参数的单调性与敏感性。考虑到轴承退化状态在时间尺度的连续性,构建基本尺度熵、有效值以及退化时间的三维退化特征向量,并采用GG模糊聚类方法对轴承性能退化状态的不同阶段进行划分,实现对性能退化状态的识别。采用来自IEEE PHM 2012的轴承全寿命试验数据进行实例分析,并与FCM、GK算法进行对比,结果表明本文所提出的方法聚类效果更优,同一退化状态内的时间聚集度更高,能够为轴承性能退化状态的识别提供一种有效的途径。
-
单位中国人民解放军陆军工程大学; 上海海事大学