摘要
温度数据具有明显的反向、时序相关性及多尺度特征,提升温度预测精度的关键在于能否有效提取温度数据的上述特征.为提取这些特征,该文提出一种多通道卷积双向长短期记忆网络(convolutional neural network-bidirection long short-term memory, CNN-BiLSTM)的短时温度预测模型.该模型首先利用双向长短期记忆网络(BiLSTM)提取数据的反向特征、时序相关性特征;再利用多通道且不同尺寸、不同膨胀率的卷积神经网络(CNN)提取数据的多尺度特征,组成在学习多尺度特征后的数据,将其和原始数据作为BiLSTM层的多通道输入,输出的数据经过全连接层,形成最终的预测结果.实验结果表明:多通道CNN-BiLSTM的短时温度预测模型能有效地提取数据的时序相关性、反向及多尺度特征,可有效地提升温度预测精度,是一种行之有效的短时温度预测模型.
- 单位