摘要

目的:提高小个体槟榔的识别精确率以及槟榔加工厂的自动化程度。方法:设计并选取Mob-darknet-52作为新型特征提取网络,采用多尺度检测尺寸,提出一种基于改进型YOLO算法的槟榔定位与识别的方法。结果:Mob-YOLOV3-SPP对槟榔果实分类的检测精度为94.8%,准确率为94.5%,召回率为95.1%,模型的检测时间为6.679 ms。结论:基于改进型YOLOV3网络的优化算法可以实现密集环境下槟榔果实的快速定位与识别。

全文