摘要
学生成绩预测是教育数据挖掘在教学实践中的一大重点,相比分类成绩预测的单一结果,回归成绩预测更能深化预测在教学实践中的意义。文章基于H2O框架下广义线性模型(GLM)、深度学习(DL)、梯度提升树(GBT)以及支持向量机(SVM)四种主流模型进行回归预测比较研究。从模型预测精度、预测结果对比、预测误差分析三个角度分析4种模型,在不同课程、不同课程属性下的适用性。结果表明,DL模型适用于专业课程,SVM模型适用于公共课程,回归模型的成绩预测受到离群数据影响较大,各模型对离群数据解释能力较弱。
- 单位