摘要
依托深圳市轨道交通12号线怀德站-福永站区间隧道工程,基于EPB/TBM双模盾构穿越地质参数和现场掘进监测数据,采用BP神经网络方法建立双模式盾构掘进参数预测模型,分别对地层参数及掘进模式进行量化,将刀盘扭矩、刀盘转速、螺旋机转速、总推进力、隧道埋深、围岩等级、岩石单轴饱和抗压强度及不同掘进模式作为输入参数,预测出在不同掘进模式及不同地层条件下的设备掘进速率,针对3类典型地层的预测结果进行可视化分析验证,并对预测模型精度进行改进分析。结果表明:神经网络预测模型在TBM模式下的微风化段平均相对误差为8.6%,EPB模式下的强风化段平均相对误差为10.6%,EPB模式下的中风化段平均相对误差26.2%;该模型对强风化段及微风化段等地层强度变化较为稳定的地层预测精度较高,同时,该预测模式适用于22个隐层神经元并对掘进速率采用直接放缩的方法。
-
单位深圳市地铁集团有限公司; 西南交通大学; 中交一公局厦门工程有限公司