摘要
协同过滤是到目前为止最成功和应用最广泛的推荐技术,然而,由于用户-项目矩阵极端稀疏导致推荐不精确。针对该问题,提出了三种数据填充方法和两种推荐策略。对评分矩阵中未评分数据的三种数据填充方法是:(1)采用行和列数据的加权平均值填充;(2)采用行和列数据的众数的平均值填充;(3)采用行和列数据的中位数的平均值填充。一种推荐策略是直接用填充数据作为预测评分进行推荐;另一种推荐策略是将填充数据后的评分矩阵作为伪评分矩阵,应用Pearson相关相似性进行协同过滤推荐。采用MovieLens数据集进行的实验结果表明:上述几种推荐策略均可有效地缓解评分数据稀疏性问题,且提高了推荐精确度。
- 单位