摘要
An extension of the high-order WENO methods based on the gas-kinetic theory is carried out. The hybrid kinetic WENO method proposed in Int.J.Numer.Meth. Fluids 79(6), 290-305(2015) is further extended to the 7th-order and the 9th-order cases. Within the framework of the 5th-order hybrid kinetic WENO method, the computational accuracy and efficiency of different shock detection techniques are compared. The TVD Runge-Kutta method is used for temporal integration, and the hybrid kinetic WENO method is employed for spatial discretization. Both one-dimensional and two-dimensional numerical examples are presented to show that the extended hybrid kinetic methods have higher resolution and less numerical dissipation than the traditional flux vector splitting technique, and can also have good shock-capturing ability. It is also found that the shock detection technology proposed by Ohwada et al. has good shock-detection ability and computational efficiency.
-
单位高温气体动力学国家重点实验室; 中国科学院大学