摘要
针对传统同时定位与地图构建(SLAM)算法在构建三维地图过程中缺少语义信息问题,本文在视觉SLAM算法基础上,结合基于深度学习的Deeplab V3+语义分割模型,构建包含几何信息与语义信息的三维稠密语义地图.对Deeplab V3+模型结合视觉SLAM造成语义地图构建难以满足实时性问题,精简Deeplab V3+模型参数,主干网络选用轻量级卷积网络MobileNetV3进行特征提取,同时对空洞空间金字塔池化模块中卷积层采用非对称卷积运算.最后利用贝叶斯更新方法将对RGB图像分割后获得的语义信息增量融合进三维地图,实现在三维空间对不同物体进行语义标注,最终完成三维稠密语义地图构建.实验采用NYU v2数据集进行语义地图构建,结果表明,改进后的Deeplab V3+可以精确快速进行语义分割,应用于三维稠密语义地图构建,满足系统实时性要求.
- 单位