摘要

为解决非线性复杂时间序列在线预测问题,提出了一种基于过程神经网络模型的在线预测方法.首先,在历史数据的基础上建立双并联离散过程神经网络模型;然后,根据在线更新的数据样本,采用递推极限学习算法对过程神经网络隐层到输出层的权值进行相应的更新;最后,应用权值更新后的过程神经网络模型对时间序列进行预测.文中给出了具体的过程神经网络学习算法与权值更新机制,并以混沌时间序列与液体火箭发动机的状态预测为例对方法进行了验证.研究结果表明:该方法在预测精度和适应能力上较单一的离线模型有显著提高,可以为非线性复杂时间序列在线预测问题提供一种有效的解决方法.

  • 单位
    国防科学技术大学