针对一类非线性偏微分方程,提出了一种新的高精度紧致差分方法.首先对内部网格节点处的空间一阶和二阶导数项采用四阶精度的Padé紧致差分格式进行离散,然后对时间导数项采用泰勒级数展开并使用截断误差余项修正法进行离散,最终得到了求解该非线性方程的一种三层隐式高精度紧致差分格式,其截断误差为O(τ2+τh2+h4),即当τ=O(h2)时,该格式在空间上具有四阶精度.最后通过对广义Burgers-Fisher方程和广义Burgers-Huxley方程的数值求解,验证了本文方法的精确性和可靠性.