摘要

本文提出了一种新的基于Laplacian语音模型的语音增强算法。首先,在假定语音和噪声的短时DCT系数分别服从Laplacian和Gaussian分布的基础上,推导了最小均方误差意义下的语音信号短时DCT系数估计;然后,根据语音存在概率估计,提出了语音信号短时DCT系数估计的修正因子。在增强算法中,提出了面向判决的Laplacian语音模型参数估计和基于Laplacian语音模型的改进最小量控制递归平均(IMCRA)噪声估计算法。仿真结果表明,本文算法不仅在噪声抑制性能方面优于近两年国际上提出的几种基于Gaussian语音模型的语音增强算法,而且在增强语音质量方面也具有更好的性能。

  • 单位
    中国人民解放军陆军工程大学