摘要

针对临近空间高超声速再入滑翔目标的跟踪问题,提出了一种基于回顾成本输入估计的无偏转换量测卡尔曼滤波(Retrospective cost input estimation-unbiased converted measurements Kalman filter, RCIE-UCMKF)。首先,根据再入滑翔目标的飞行特性,将加速度看成是未知的确定输入构建运动学跟踪模型;然后,对目标的非线性量测信息进行无偏转换,并将得到的噪声协方差矩阵进行解耦,降低算法的复杂度;最后,利用回顾成本的输入估计对未知加速度进行重构,采用递推最小二乘法更新输入估计器的参数矩阵,同时将估计的加速度引入到卡尔曼滤波框架下,实现对高超声速再入滑翔目标状态的准确估计。仿真结果表明了该算法的有效性和可行性。