摘要
针对污水处理过程在运行工况频繁波动的情况下,单一水质软测量模型精度下降的问题,提出了污水水质集成软测量建模方法.模型由3层结构组成:基于模糊聚类-极限学习机(ELM,extreme learning machine)的预测子模型位于最底层,第2层采用自适应加权融合方法将子模型预测值进行集成,最上层采用基于信息熵的元学习机制管理融合权值.ELM的快速学习特点使模型具有较好的实时性能,自适应加权融合方法和元学习机制提高了模型泛化性,元学习机制跟踪污水处理过程运行状况的动态变化趋势.仿真结果表明,在多工况条件下,污水水质COD(chemical oxygen demand,化学需氧量)集成软测量模型具有较好的精度.
- 单位