摘要

游客倾向于采用个性化的旅游路线,规划这样的路线需要综合考量路径长度、路径开销和路径覆盖的兴趣点.关键词覆盖最优路径查询(KOR)就是用于规划这样的路线的一类查询,其处理过程通常包括预处理和路径拓展.由于路网图规模的不断扩大,现有算法预处理所需内存开销急剧上升,由于内存不足,导致较大规模的路网不能处理;路径拓展搜索空间快速膨胀,应用场景可扩展性与查询实时性难以保证.针对这些问题,提出一种大规模路网图下关键词覆盖最优路径查询算法KORL.KORL在预处理阶段将路网划分为若干子图,仅保存子图内路径和子图之间路径的信息,以减小预处理所需内存.在路径拓展阶段,综合运用最小代价剪枝、近似支配剪枝、全局优先拓展和关键词顶点拓展等策略对现有算法进行优化,以高效地搜索近似最优解.采用美国各地区的路网图,在16G内存环境下进行实验,突破了现有算法只能处理顶点数不超过25K路网图的限制.实验结果表明,KORL算法具有良好的可扩展性.

全文