摘要

微表情表现强度微弱且非常短暂。针对微表情识别效果不理想的问题,以视觉几何组(Visual Geometry Group,VGG)网络为基础,提出卷积神经网络(Convolutionnal Neural Network,CNN)与长短期记忆网络(Long Short-Term Memory,LSTM)结合的识别算法。CNN提取数据集CASME Ⅱ的空域特征,LSTM处理时域特征,实现空域与时域特征的结合。针对深度学习训练困难以及过拟合问题,加入批量归一化算法与丢弃法,提高网络训练速度,有效防止过拟合。针对数据集稀缺的问题,固定每次读取帧序列的长度,随机生成起始帧的位置,不断循环读取以遍历整个数据集并达到数据扩增。根据实验结果,五类微表情(高兴、惊讶、厌恶、抑郁、其他)识别率最高可达72. 3%。