本发明公开了一种基于SPM和深度增量SVM的SAR图像分类方法。其步骤为:(1)输入SAR图像;(2)提取SAR图像稠密SIFT特征;(3)构建字典;(4)稀疏编码;(5)空间金字塔池化;(6)计算归一化特征;(7)构建增量训练集;(8)初始化深度增量支持向量机;(9)计算测试样本的初始分类准确率;(10)更新深度增量支持向量机;(11)计算测试样本的分类准确率。本发明能有效提取图像的空间信息,并结合了深度学习和增量学习的优点,具有提高SAR图像分类精度,减少训练时间的优点。