基于LCN的医疗知识问答模型

作者:马满福; 刘元喆; 李勇; 王霞; 贾海; 史彦斌; 张小康
来源:西南大学学报(自然科学版), 2020, 42(10): 25-36.
DOI:10.13718/j.cnki.xdzk.2020.10.004

摘要

中文医疗领域分词比较困难,导致现有算法对于医疗问题特征提取不充分,针对中文分词的特点,提出基于LCN(Lattice CNN,格子卷积神经网络)的医疗知识问答模型.首先,利用某三甲医院提供的15 000份电子住院记录,基于电子住院记录利用Glove模型训练医学词向量.其次,通过各大医疗网站获得大量医学名词及名词间的关系,构建医学知识图谱,并提取知识图谱中的关系词,结合已训练的词向量获取关系向量.最终,以医学词向量作为模型输入端并利用LCN神经网络提取医疗问题特征,计算问题特征与关系向量的相似度,进而训练医疗知识问答模型.实验表明, LCN模型准确率可达89.0%,与同类问答模型比较,提高了2%.