文中讨论了基于模式分类的算法,通过常规的体检参数对骨质疏松情况进行预测和识别。由于常规体检参数和骨质疏松诊断结果之间的线性相关度小、参数方差大等问题,基于线性分类边界模型得到的分类器误差大,文中利用数据和骨质疏松之间的非线性关联特性,使用高斯核函数将原始训练数据映射到核空间进行分类,较好地实现了用体检参数预测骨质疏松。此外文中给出了利用多个分类器的分类结果进行组合方法,使得不同分类器分类结果相互矛盾时能够输出唯一的诊断结论。