摘要
NOx浓度的准确预测对于燃烧优化控制至关重要,有利于提高能源利用效率和减少环境污染。提出了一种基于深度卷积神经网络(deep convolution neural network,DCNN)和支持向量机(support vector machine,SVM)的NOx浓度预测方法。该方法首先利用DCNN对火焰图像的深层特征进行提取,然后采用支持向量机对所提取到的深层特征进行分析,从而实现NOx浓度预测。通过采集4.2MW重油燃烧锅炉不同燃烧工况下的火焰图像与NOx浓度,对所提出的预测方法的有效性进行测试。试验结果表明,在不同燃烧工况下,DCNN-SVM的均方根误差为1.58mg/m3,低于基于静态物理特征的预测模型(7.96mg/m3)。表明DCNN-SVM具有较高的预测精度,不仅克服了静态物理特征表达能力的不足,而且摆脱了繁琐的特征设计过程。
- 单位