基于高光谱的棉花叶片氮素检测

作者:王赏贵; 李新疆; 费浩; 李艳慧; 孟文博; 陈仁谷
来源:科技创新与应用, 2020, (03): 17-19.

摘要

采用高光谱技术检测棉花叶片氮素是本次研究的主要手段。选用新疆南疆最具代表性的棉花作物作为研究对象,采用连续投影算法(successive projections algorithm,简称SPA)和标准正态变量变换方法(standard normal variate transformation,简称SNV)等算法进行光谱预处理,并利用偏最小二乘回归模型(PLS)预测棉花叶片氮素情况,探究棉花叶片氮素和高光谱之间的关系。结果显示:SPA-PLS算法的逐渐回归结果的R值最小能达到0.8032,预测精度能达到0.9647以上,RMSEP最大为0.2604,RMSECV最大为0.1414,预测参数都达到较好效果,说明利用高光谱成像技术能够快速、准确的检测棉花叶片氮素含量,为精准施肥和生态环境保护提供帮助。