摘要
语义分割是计算机视觉中非常重要的一环,其核心是对输入图像中的每个像素进行分类和定位,本文对于传统的FCN网络进行略微改进,从而实现提高语义分割效果。首先,将轻量级网络FCN作为语义分割的特征提取网络。其次,利用卷积缩小网络特征来模型大小和降低模型计算成本。最后,以人与背景的关系作为约束条件,使用CrossEntropyLoss损失函数和MIoU(均交并比)等评价指标进行模型的评估,最终在公开数据集Supervisely的5711张人像图片中,按0.9作为训练集、0.1作为验证集进行人像分割,达到了82.47%的MIoU值,较原先网络80.25%的MIoU值有所提高。在16G的运行内存下,达到了每张图25帧。
- 单位