摘要
为了研究现有车辆目标检测算法的检测精度与检测速度相矛盾的问题,提出了一种小型化的改进YOLOv3深度卷积网络的实时车辆检测及跟踪算法。采用构建卷积层数少的网络架构以及进行多目标跟踪的方法,分析了大网络模型结构时正向推理速度慢、小网络模型结构时检测精度低的原因。在不同尺度卷积特征多层次提取车辆特征信息来保证准确率的基础上,利用K-means++算法改进聚类先验框中心点的提取,同时借鉴darknet19骨干网络结构,构建一种网络深度更小的基础卷积网络结构,采用更少的重复残差块结构单元,使网络模型结构小型化。在采用卡尔曼滤波算法对目标检测后下一时刻的车辆位置进行跟踪的基础上,利用匈牙利匹配算法进行分配关联视频相邻帧中的车辆,确定被检测目标唯一标签ID,实现对多个目标的精确定位与跟踪,以此改善检测不连续、漏检、目标被遮挡等检测不稳定的情况。结果表明:在实车自采集数据和公开数据集KITTI上进行测试,相较于YOLOv3网络,在平均准确率基本保持不变情况下,网络参数减小,网络模型大小缩小为1/4,为57.2 MB,检测速度提高一倍,达到101.7 f/s。整体算法检测速度达到11.3 ms/帧,检测率为97.50%。该小型化网络检测跟踪算法在复杂道路环境中有较强的鲁棒性,可以满足实际智能驾驶过程中对车辆检测跟踪的精度、速度的要求。
- 单位